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1 Introduction

No one doubts that understanding various aspects of low-energy effective theory of M2-

branes enables us to uncover mysterious properties of M-theory and non-perturbative

physics of string theories. Recently, Bagger, Lambert and Gustavsson proposed a three-

dimensional N = 8 superconformal Chern-Simons model based a novel 3-algebra (BLG

model) [1, 2]. This model has been expected to describe the low energy effective theory of

two coincident M2-branes in eleven dimensions. However, it seemed difficult to generalize

their model to the case of arbitrary number of M2-branes.

Meanwhile, Aharony-Bergman-Jafferis-Maldacena proposed a three-dimensional N =

6 U(N) × U(N) Chern-Simons-matter theory with level (k,−k) (ABJM model) which

may be regarded as the low-energy effective theory of N coincident M2-branes prob-

ing C4/Zk orbifold [3]. The model consists of gauge fields Aµ, Âµ, four complex scalars

ZA,WA (A = 1, 2) in the (anti) bi-fundamental representation of the gauge group, and their

superpartners. The model is believed to be a dual description of M-theory on AdS4×S7/Zk.

After the proposal by Aharony-Bergman-Jafferis-Maldacena, a lot of works on the ef-

fective theory of interacting multiple membranes have been studied. Among them, classical
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solutions in the three-dimensional M2-brane world-volume theory attracted much attention

since these solutions can be interpreted as various configurations of branes existing in the

eleven-dimensional M-theory. In [4], a BPS fuzzy funnel configuration that represents an

M5-brane intersecting with multiple M2-branes was found.1 A domain wall solution that

interpolates between fuzzy S3 and trivial vacua was found [6] in the ABJM model with the

D-term mass deformation. On the other hand, time evolutions of fuzzy S3 and M5/anti-

M5 configurations that are generically non-BPS were investigated in [7]. These results

provide some evidence that the ABJM model gives a correct description of the dynamics

of multiple membranes.

On the other hand, in [8], AdS4×S7 dual theory of M2-branes with reduced supersym-

metry was investigated following the prescription studied by Polchinski-Strassler [9]. The

author of [8] proposed a mass deformation of multiple membrane theory with N = 2 world-

volume supersymmetry and studied a probe M5-brane in the presence of anti-self-dual 4-

form flux T4 in the eleven-dimensional supergravity. The vacua are spherical M5-branes

with topology R1,2 × S3 sharing three dimensions with M2-branes. He conjectured that

there exists BPS domain walls that interpolate between various vacua in the model. How-

ever, the correct description of the mass deformed multiple M2-brane theory was not known

at that time. Note that the corresponding supergravity solutions were analyzed in [10, 11].

In this paper, we study the ABJM model deformed by an F-term mass which was first

introduced in [12]. The F-term mass generically breaks N = 6 supersymmetry down to

N = 2 preserving SU(2)diag global symmetry of SU(2) × SU(2) and the resulting model is

identified with the model studied in [8]. We find that a vacuum configuration of the model

is a fuzzy S3. We see that the radius of the sphere derived here coincides with the one

obtained in [8] at large-N identifying our vacuum as a spherical M5-brane with topology

R1,2 × S3. From the viewpoint of the M2-brane world-volume theory, this is nothing but

Myers’ dielectric effect [13] caused by eleven-dimensional supergravity flux T4 ∼ m. We also

see that reducible configurations found in [12] are identified with a set of fuzzy S3 shells.

In the latter half of this paper, we study various classes of BPS configurations with

polarized M2-brane geometry in the mass deformed ABJM model. Assuming a polarized

M2-brane configuration, we find that the Hamiltonian effectively reduces to that of the well-

known abelian Chern-Simons-Higgs system with sixth-power potential studied in detail

by Jackiw-Lee-Weinberg [14]. It has been known that this model exhibits an N = 2

supersymmetry in three dimensions [15] and admits BPS topological vortices and domain

walls. In addition, there exists non-topological soliton solutions [16] and a BPS supertube

solution [17]. We find that the potential for the S3 radius in the effective Hamiltonian

has the same structure as found in [8]. Since the configurations corresponding to the BPS

solutions can exist only in the case of non-zero m, these solutions are supported against

collapse by the non-zero background flux T4 realizing a generalization of the Myers effect.

The organization of this paper is as follows. In section 2, we introduce the ABJM

model deformed by the F-term mass. Equations of motion and N = 2 on-shell super-

symmetry transformations are derived. In section 3, we study the vacuum structure of

1A similar analysis in the BLG model has been performed in [5].
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the model. We compare the radius of the fuzzy S3 with the one found in [8] at large-N

finding agreement between them. In section 4, assuming an ansatz, we derive the effective

Hamiltonian that reduces to the abelian Chern-Simons-Higgs model studied in [14, 18].

The non-abelian property of fields is totally encoded into the “BPS matrices” first con-

structed in [12]. We then perform the Bogomol’nyi completion in the effective Hamiltonian

combining the kinetic and potential terms and derive the BPS equations. The consistency

between these BPS equations and the full equations of motion, as well as the number of

preserved supersymmetries are discussed. In section 5, parts of the exact and numerical

results of the BPS solutions are discussed. Possible interpretations of these solutions in

terms of eleven-dimensional M-theory are briefly discussed in this section. Section 6 is

devoted to conclusions and discussions. In appendix A, the explicit form of the BPS ma-

trices is presented. The N = 2 superfield formulation of the ABJM model can be found in

appendix B. The effective Lagrangian including fermion parts on the polarized M2-branes

can be found in appendix C.

2 The ABJM model

The ABJM model [3] is a (2+1)-dimensional N = 6 superconformal Chern-Simons-Higgs

model of level (k,−k) with U(N) × U(N) gauge symmetry. The model is expected to

describe the low energy world-volume theory of N coincident M2-branes probing C4/Zk.

We employ the notation and convention of [19] but with a different normalization of the

U(N) gauge generators T a such that Tr[T aT b] = 1
2δ

ab. The bosonic part of the massless

ABJM action is

S = Skin + SCS + Spot , (2.1)

where each term is given by

Skin =

∫

d3x Tr
[

−(DµZ
A)(DµZA)† − (DµWA)(DµWA)†

]

, (2.2)

SCS =
k

4π

∫

d3x Tr ǫµνλ

[

Aµ∂νAλ +
2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3
ÂµÂνÂλ

]

, (2.3)

Spot = −4π2

k2

∫

d3x Tr
[

(ZAZ†
A +W †AWA)(ZBZ†

B −W †BWB)(ZCZ†
C −W †CWC)

+(Z†
AZ

A +WAW
†A)(Z†

BZ
B −WBW

†B)(Z†
CZ

C −WCW
†C)

−2Z†
A(ZBZ†

B −W †BWB)ZA(Z†
CZ

C −WCW
†C)

−2W †A(Z†
BZ

B −WBW
†B)WA(ZCZ†

C −W †CWC)
]

+
16π2

k2

∫

d3x Tr
[

W †AZ†
BW

†CWAZ
BWC −W †AZ†

BW
†CWCZ

BWA

+Z†
AW

†BZ†
CZ

AWBZ
C − Z†

AW
†BZ†

CZ
CWBZ

A
]

. (2.4)

Here Aµ, Âµ are U(N) × U(N) gauge fields, ZA,W †A (A = 1, 2) are complex scalar fields

in the U(N) × U(N) bi-fundamental (N, N̄) representation. The world-volume metric is
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ηµν = diag(−1, 1, 1). The gauge covariant derivative is

DµZ
A = ∂µZ

A + iAµZ
A − iZAÂµ . (2.5)

The gauge field strength is defined as

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] , (2.6)

and similarly for Âµ. The common U(1) charge is fixed to +1. The model exhibits a man-

ifest SU(2) × SU(2) × U(1)R global symmetry. Under the each SU(2)s, ZA,WA transform

independently in the fundamental representation. Apart from this manifest symmetry,

there is an SU(2)R symmetry under which the fields Z1,W †1 (and Z2,W †2) transform as

a doublet. It was discussed in [3] that the SU(2) × SU(2) global symmetry is combined

with the SU(2)R and enhanced to SU(4)R ∼ SO(6)R. Therefore, for k > 2, the model has

N = 6 supersymmetry. We consider a trivial embedding of the world-volume in the space-

time. Namely, the world-volume coordinates (x0, x1, x2) are identified with the space-time

coordinates (X0,X1,X2). The four complex scalars ZA,W †A represent the transverse dis-

placement of the M2-branes along eight directions XI (I = 3, . . . , 10). The orbifolding

symmetry Zk act as (ZA,W †A) → e
2πi

k (ZA,W †A). The N = 2 superfield formalism of the

model can be found in appendix B.

The Gauss’ law constraint comes from the equation of motion for the gauge fields,

k

4π
ǫρµνFµν = i

[

ZA(DρZA)† − (DρZA)Z†
A

]

+ i
[

W †A(DρWA) − (DρWA)†WA

]

, (2.7)

k

4π
ǫρµν F̂µν = i

[

(DρZA)†ZA − Z†
A(DρZA)

]

+ i
[

(DρWA)W †A −WA(DρWA)†
]

. (2.8)

The Noether current and charge corresponding to the following U(1) gauge transformation

(which we call baryonic U(1))

(ZA,W †A) −→ eiα(ZA,W †A) (2.9)

are derived as

jµb = −iTr
[

ZADµZ†
A − Z†

AD
µZA −WAD

µW †A +W †ADµWA

]

, (2.10)

Qb = i

∫

d2x Tr
[

ZAD0Z
†
A − Z†

AD0Z
A −WAD0W

†A +W †AD0WA

]

. (2.11)

Let us consider massive deformations of the model. There are two kinds of massive

deformations: F- and D-term deformations [12].2 Here we focus on the F-term mass

deformation. The superpotential is given by

W = W0 + δW , (2.12)

where

W0 =
1

4

(

8π

k

)

ǫACǫ
BDTr

[

ZAWBZCWD

]

, (2.13)

2See also [20] for massive deformations with reduced supersymmetries.
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is the original superpotential in the massless ABJM model [19] and3

δW = mTr
[

ZAWA

]

, m ∈ R , (2.14)

is a mass term which breaks the SU(2) × SU(2) global symmetry down to SU(2)diag and

keeps manifest the N = 2 supersymmetry. This is different from the D-term mass deforma-

tion which keeps the manifest SU(2) × SU(2) × U(1)R × Z2 symmetry and would preserve

N = 6 maximal supersymmetry [12]. Here the Z2 transformation swaps ZA and W †A. It

is easy to derive the equation of motion for the scalar fields. The full equation of motion

for ZA is

DµD
µZA =

(

4π2

k2

)

[

(ZBZ†
B −W †BWB)2ZA + (ZCZ†

C −W †CWC)(ZBZ†
B +W †BWB)ZA

+(ZCZ†
C +W †CWC)(ZBZ†

B −W †BWB)ZA + ZA(Z†
BZ

B −WBW
†B)2

+ZA(Z†
BZ

B −WBW
†B)(Z†

CZ
C +WCW

†C)

+ZA(Z†
BZ

B +WBW
†B)(Z†

CZ
C −WCW

†C)

−2(ZBZ†
B −W †BWB)ZA(Z†

CZ
C −WCW

†C)

−2ZB(Z†
CZ

C −WCW
†C)Z†

BZ
A − 2ZAZ†

C(ZBZ†
B −W †BWB)ZC

−2ZAWB(ZCZ†
C −W †CWC)W †B − 2W †C(Z†

BZ
B −WBW

†B)WCZ
A

−4W †CWBZ
AWCW

†B + 4W †CWCZ
AWBW

†B − 4W †BZ†
CZ

AWBZ
C

−4ZCWBZ
AZ†

CW
†B + 4W †BZ†

CZ
CWBZ

A + 4ZAWBZ
CZ†

CW
†B
]

+m2ZA− 4πm

k
ǫACǫBD

(

W †BWCW
†D+ZBZ†

CW
†D+W †BZ†

CZ
D+ZBWCZ

D
)

.

(2.15)

The equation of motion for W †A is obtained by replacing ZA with W †A in the above

expression.

For later convenience, we derive the Hamiltonian of the model. The Chern-Simons

part gives a vanishing contribution because it is a topological quantity. However, the

gauge fields enter in the Hamiltonian through the covariant derivative. The result is

H =

∫

d2x Tr
[

|D0Z
A|2 + |DiZ

A|2 + |D0WA|2 + |DiWA|2 + Vscalar

]

, (2.16)

where the potential part is

Vscalar = VD + VF , (2.17)

VD =
4π2

k2
Tr

[

∣

∣

∣ZBZ†
BZ

A − ZAZ†
BZ

B −W †BWBZ
A + ZAWBW

†B
∣

∣

∣

2

+
∣

∣

∣
W †BWBW

†A −W †AWBW
†B − ZBZ†

BW
†A +W †AZ†

BZ
B
∣

∣

∣

2
]

, (2.18)

VF =
64π2

k2
Tr

[

∣

∣

∣

∣

km

8π
WA +

1

2
ǫACǫ

BDWBZ
CWD

∣

∣

∣

∣

2

+

∣

∣

∣

∣

km

8π
ZA − 1

2
ǫACǫBDZ

BWCZ
D

∣

∣

∣

∣

2
]

.

(2.19)

3Note that its “conjugate” part is given by δW̄ = −mTr[W̄A
Z̄A]. The minus sign in front of m comes

from the extra minus sign of the components in a “conjugated” superfield [19]. See appendix B.
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As we mentioned, the model exhibits at least N = 2 manifest supersymmetry. It can

be shown that the model is invariant under the following (on-shell) N = 2 supersymmetry,

δZA =
√

2ǫζA , (2.20)

δWA =
√

2ǫωA, (2.21)

δζA =
√

2ǫFA + i
√

2ǭ(−ZAσ̂ + σZA) +
√

2iγµǭDµZ
A , (2.22)

δωA =
√

2ǫGA + i
√

2ǭ(−WAσ + σ̂WA) +
√

2iγµǭDµWA , (2.23)

δAµ = − i√
2
(ǫγµχ̄) − i√

2
(ǭγµχ) , (2.24)

δÂµ = − i√
2
(ǫγµ ˆ̄χ) − i√

2
(ǭγµχ̂) , (2.25)

where ζA, ωA are fermionic partners, and FA, GA, σ
a, σ̂a, χ, χ̂ are auxiliary fields whose

equations of motion are given in (B.10)–(B.14) in appendix B. The supersymmetric trans-

formation is achieved by the operator δ = ǫQ + ǭQ̄ where Qα is a supercharge and ǫ is a

two component complex spinor.

3 Vacua as dielectric M2-branes

In this section, we discuss the physical meaning of our F-term deformation and investi-

gate the vacuum structure of the model. For the massless ABJM model, there is a dual

description as M-theory on AdS4 × S7 at large-N .4 We can perturb the AdS4 × S7 side

by turning on a non-trivial supergravity flux which causes additional terms on the dual

M2-brane side. Indeed, in [8], Bena considered a mass perturbation of the theory of N

coincident M2-branes. Its fermionic part is given by

δL = Re

(

m

4
∑

I=1

Λ2
I

)

. (3.1)

Here ΛI are complexified Majorana fermions living on the M2-branes. The mass term

keeps at least N = 2 supersymmetry of the N = 8 maximal supersymmetry. The mass

terms for the scalar fields break SO(8)R symmetry down to SO(4)R. We will discuss this

issue of global symmetry a little bit in detail later. The author of [8] conjectured that the

deformed model is given by a superpotential of the form

W ∼ z1z2z3z4 +m
4
∑

I=1

z2
I , (3.2)

where za = xa+2 + ixa+6, (a = 1, . . . , 4) are N = 2 chiral superfields whose lowest com-

ponents are complex scalars representing fluctuations along transverse directions to the

M2-brane world-volume. The non-zero mass parameter on the M2-brane side was iden-

tified with non-trivial anti-self-dual constant 4-form flux T4 on the supergravity side via

4We here focus on the k = 1 sector where the orbifolding by Zk becomes trivial. However, we expect

that the results in this section hold even for the k > 1 case.
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AdS/CFT duality. The 4-form flux has a non-trivial value in the directions transverse to

the M2-branes. The “(anti) self-dual” means that the flux satisfies

1

4!
ǫijkl

mnopTmnop = ±Tijkl , (3.3)

where ǫijkl
mnop is the eight-dimensional epsilon tensor and indices i, j, . . . run from 3 to 10.

One may imagine that the M2-branes are polarized due to the background flux form-

ing another higher dimensional brane in eleven-dimensions. The most natural candidate

of this higher dimensional brane is an M5-brane. Indeed, the vacuum structure of this

deformed model was studied through an examination of a probe M5-brane with N -units

of M2-brane charge in the AdS4 × S7 perturbed by the flux. For the case of four equal

masses, which is our concern here, the supersymmetric vacuum is a configuration of an M5-

brane with geometry R1,2 × S3. Its R1,2 directions are shared with the M2-branes while

other three-dimensions are wrapped on an S3 inside the S7. The radius r of the S3 was

derived by evaluating the M5-brane action via the Pasti-Sorokin-Tonin and Perry-Schwarz

approaches [21, 22]. Its “potential” term at large-N is [8]

V (z) =
3T5

4A
(r3 − 4rmA/3)2, (3.4)

where A = 4πN/M3
11 and M11 is the eleven-dimensional Planck mass. Here we have added

the overall M5-brane tension T5, which was ignored in [8], and we have restricted ourselves

to the 3456 plane in the 3-7, 4-8, 5-9, 6-10 planes using SO(4) rotations [8]. From the

result (3.4), we find a supersymmetric vacuum

r2 ∼ N
m

M3
11

. (3.5)

Apart from the non-zero radius, there is also a trivial vacuum r = 0. Therefore there should

exist a domain wall solution which interpolates between these vacua. It was conjectured

that the tension of a domain wall is

τDW ∼ m2N2. (3.6)

The above situation can be extended to the case that the N M2-branes are uniformly

distributed on more than one 3-sphere, with M5-brane charges. The potential felt by a

probe M5-brane with M2-brane charges is still written by (3.4), but with a different radius

rb and M2-brane charges nb. Its form is given by (once again restricting to the 3456 plane),

V =
∑

b

3T5

4Ab
(r3b − 4rbmAb/3)

2, (3.7)

where Ab ≡ 4πnb/M
3
11. Therefore the ground states form M2-brane 3-sphere shells with

radii rb = 4mAb/3.

With these results in mind, let us return to our model. The ABJM model deformed by

the F-term mass is given by the superpotential (2.12). This is just the superpotential (3.2)

– 7 –
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conjectured in [8]. Its fermionic part Re(2mTr[ζAωA]) is nothing but the equation (3.1)

via the identification

ζA =
1√
2
(ΛA + iΛA+2) , ωA =

1√
2
(ΛA − iΛA+2) . (3.8)

The mass perturbation part (2.14) keeps SU(2)diag which is a subgroup of the expected

R-symmetry group SO(4)R. However, we remind the fact that for the massless ABJM

model, the global SU(2) × SU(2) symmetry does not commute with the SU(2)R, they

combine giving an SU(4)R symmetry. This mechanism of symmetry enhancement would

be true even for our case. Although it is not manifest here, the remaining SU(2)diag global

symmetry would be combined with SU(2)R generating SU(2)diag × SU(2)R ∼ SO(4)R.

The supersymmetric vacuum of our model can be obtained as follows [12]. Assuming

a configuration

ZA = W †A = f0S
A , f0 ∈ C , (3.9)

the condition VD = 0 is automatically satisfied. Here SA are BPS matrices [12] presented

in appendix A. The F-term condition

∂W
∂ZA

= −
(

km

8π
− 1

2
|f0|2

)

f̄0S
†
A = 0 ,

∂W
∂WA

= −
(

km

8π
− 1

2
|f0|2

)

f0S
A = 0 (3.10)

yields the following vacua

Aµ = Âµ = 0 , |f0|2 = 0,
km

4π
, (3.11)

where f0 = 0 is a trivial vacuum. At the vacuum corresponding to f0 6= 0, the U(N)×U(N)

gauge symmetry is broken to U(1) × U(1). One of these U(1)s is the “baryonic U(1)”,

eq. (2.9), and the other one being an independent rotation of a degree of complexity

freedom which decouples when the ansatz (3.9) is used. To see the physical meaning of

f0 6= 0 solution, let us define the following combinations of the transverse fluctuation modes

UA
± ≡ 1

2
(ZA ±W †A) , (A = 1, 2) . (3.12)

Due to the ansatz ZA = W †A, only UA
+ is non-zero. Therefore half of the eight transverse

degrees of freedom XI (I = 3, . . . , 10) is now dropped and this configuration is nothing

but a fuzzy S3 with radius

R2 =
2

NT2
Tr[UA

+U
†
+A] =

1

T2
(N − 1)

km

2π
∼ N

m

M3
11

(N → ∞) . (3.13)

Here T2 is a tension of an M2-brane. We have used the relation that the p-brane ten-

sion in eleven-dimensions is given by Tp = (2π)−pMp+1
11 . This result coincides with the

equation (3.5) obtained from the dual M5-brane description. Therefore the vacuum con-

figuration (3.11) is interpreted as polarized M2-branes caused by the background flux T4

with its VEV m. This is just an M-theory realization of Myers’ dielectric effect [13].
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Because the model admits vacua f0 = 0, f0 6= 0 and in each sector they have different

values of the superpotential, there is a domain wall solution that interpolates between them.

Indeed, it is easy to find such a solution with vanishing gauge fields. The Bogomol’nyi

completion of the energy density for the configuration ZA = ZA(x1), WA = WA(x1) with

vanishing gauge fields is

E =

∫

dx1 Tr
[

∂1Z
A∂1Z

†
A + ∂1WA∂1W

†A + VD + VF

]

=

∫

dx1 Tr

[

∣

∣

∣

∣

∂1Z
A −mW †A +

4π

k
ǫACǫBDW

†BZ†
CW

†D

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂1W
†A −mZA +

4π

k
ǫABǫCDZ

CWBZ
D

∣

∣

∣

∣

2

+ VD

]

+ T, (3.14)

where the surface term is

T = −
∫

dx1 ∂1Tr

[

−mZAWA − 2π

k
ǫACǫ

BDZAWBZ
CWD

−mW †AZ†
A +

2π

k
ǫACǫBDZ

†
AW

†BZ†
CW

†D

]

. (3.15)

The BPS equations are obtained by requiring that VD = 0 and the vanishing condition

inside the absolute values in the equation (3.14). A solution to these equations is given by

ZA = W †A = f(x1)S
A , f2(x1) =

k

4π

m

1 + e−2mx1

, (3.16)

which also satisfies the Gauss’ law (2.7) and (2.8). This solution is just the one first found

in [6], but they obtained it in the D-term deformed theory.

We can see that the solution (3.16) keeps a half of N = 2 supersymmetry specified by

Q± ≡ Q1 ± iQ̄2 , (3.17)

while the one in [6] would keep half of the maximal N = 6 supersymmetry. The tension of

the domain wall is evaluated as

T = N(N − 1)
km2

4π
∼ m2N2 , (N → ∞) . (3.18)

This agrees with the result (3.6).

Before going to the next section, we would like to consider the reducible vacuum solu-

tions discussed in [12]. Because the BPS matrices SA for any partition of N do satisfy the

vacuum condition, there is a set of reducible solutions that is obtained by replacing SA by

S̃A =







SA
N1

· · ·
SA

Nl






. (3.19)

Here Nb, (b = 1, . . . , l) satisfy
∑l

b=1Nb = N and SA
Nb

are the BPS matrices in an Nb dimen-

sional representation. We will see in a later section that these vacua correspond to a set of

fuzzy S3 shells with different values of the radius and that the potential is written as in (3.7).
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Figure 1. A schematic picture of a domain wall solution.

It is possible to capture the brane configuration corresponding to a domain wall

interpolating between one of the reducible vacua constructed, for example, by S̃A =

diag(SA
Nl
, 0N−Nl

), Nl < N at x1 = −∞ and the irreducible vacuum with dimension N

at x1 = +∞. It is easy to show that the large-N behavior of its tension is the same as

in (3.18). Following the discussion in [8, 9], in the region x1 < 0, the configuration is in-

terpreted as an M5-brane extending in the (x0, x1, x2) directions and wrapping an S3 with

M2-brane charge Nl while in the region x1 > 0, it is an M5-brane extending along the same

directions and wrapping an S3 with charge N . They are generically both bent and meet at

a point x1 = 0. Because of charge conservation, another new M5-brane with charge N−Nl

should exist at that point. This is a kind of brane junction. Because all M5-branes meet at

a point, one direction should be supplemented for the new M5-brane. This is possible if we

consider a ball B4 instead of a sphere S3. Therefore the other new M5-brane is extending

along the (x0, x2) directions and filling a four-ball B4 with its surface S3. A schematic

picture is given in figure 1.

4 Effective Hamiltonian and BPS equations

In this section, motivated by the discussion in the previous section on the spherical M5-

brane at the vacuum, we study the effective Hamiltonian for the configuration of polarized

M2-branes. We will see that the potential for the radius of this configuration coincides

with (3.4) at large N . Consider an ansatz

ZA = W †A = f(x)SA , Z†
A = WA = f̄(x)S†

A, f(x) ∈ C ,

Aµ = aµ(x)SBS†
B , Âµ = aµ(x)S†

BS
B , aµ(x) ∈ R , (4.1)

where SA are the BPS matrices. This configuration represents the M2-branes polarized

into a fuzzy S3. The physical radius of the fuzzy S3 is given by

R2 =
2(N − 1)

T2
|f(x)|2. (4.2)
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Under the ansatz, the covariant derivative becomes

DµZ
A = (∂µf(x) + iaµf(x))SA ≡ (Dµf(x))SA , (4.3)

while the gauge field strength satisfies

Fµν = (∂µaν − ∂νaµ)SBS†
B ≡ fµνS

BS†
B , (4.4)

F̂µν = fµνS
†
BS

B . (4.5)

The equations of motion for Aµ and Âµ reduce to the following equation for aµ,

k

4π
ǫρµνfµν = 2i(fDρf̄ − f̄Dρf) . (4.6)

For the case of the ansatz (4.1), we have

VD = 0 ,
∂W
∂ZA

= −
(

km

8π
− 1

2
|f |2

)

f̄S†
A ,

∂W
∂WA

= −
(

km

8π
− 1

2
|f |2

)

fSA . (4.7)

Therefore, from the equation (2.16), the effective Hamiltonian for the polarized M2-branes

is given by

H = 2N(N − 1)

∫

d2x

[

D0fD0f̄ + DifDif̄ +
64π2

k2
|f |2

(

km

8π
− 1

2
|f |2

)2
]

. (4.8)

This is nothing but the Hamiltonian for an abelian Chern-Simons Higgs model studied

in [14, 18, 23] and [17]. Note that all the non-abelian structures in the model have been

encoded into the overall factor N(N − 1) by the help of the BPS matrices. Although the

gauge symmetry has been effectively reduced to the abelian symmetry, the Hamiltonian

still describes N M2-branes.

It is known that the abelian Chern-Simons-Higgs model with the potential given in (4.8)

exhibits a three-dimensional N = 2 supersymmetry [15] and admits various class of BPS

soliton solutions. See appendix C for the full structure of the Lagrangian including fermion

parts. Following the analysis in [17], we find a Bogomol’nyi completion of the energy,

H = 2N(N − 1)

∫

d2x

[

∣

∣

∣

∣

D0f ± if

(

m− 4π

k
|f |2

)

cosα±D2f sinα

∣

∣

∣

∣

2

+

∣

∣

∣

∣

D1f ∓ iD2f cosα∓ f

(

m− 4π

k
|f |2

)

sinα

∣

∣

∣

∣

2
]

±B cosα∓ S cosα∓ P sinα± T sinα . (4.9)

where we have used the gauge field equation of motion. Therefore we have an energy bound

E ≥ 2N(N − 1)
√

(B − S)2 + (P − T)2. (4.10)
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Here the following quantities have been defined,

B ≡ km

4π

∫

d2x B, B ≡ f12 , (4.11)

S ≡ i

∫

d2x
[

∂1(fD2f̄) − ∂2(fD1f̄)
]

, (4.12)

P ≡
∫

d2x
[

D0fD2f̄ + D2fD0f̄
]

, (4.13)

T ≡
∫

d2x D1

(

m|f |2 − 2π

k
|f |4

)

. (4.14)

Here B,S,P,T are (time integrals of) the magnetic flux, the angular momentum, the linear

momentum along x2 direction, the tension of a domain wall. The energy bound (4.10) is

saturated when the angle α satisfies the following condition

cosα =
B− S

√

(B − S)2 + (T − P)2
, sinα =

T −P
√

(B− S)2 + (T − P)2
. (4.15)

The baryonic U(1) charge (2.11) for our ansatz is evaluated as

Qb = 2iN(N − 1)

∫

d2x
[

fD0f̄ − f̄D0f
]

. (4.16)

Using the equation of motion for the gauge field, we have the relation

Qb = − k

2π
N(N − 1)Φ , Φ ≡

∫

d2x B . (4.17)

The Noether charge is proportional to the magnetic flux. This is a specific property of

Chern-Simons solitons. From the Bogomol’nyi completed form of the Hamiltonian (4.9),

we obtain the BPS equations,

D0f ± if

(

m− 4π

k
|f |2

)

cosα±D2f sinα = 0 , (4.18)

D1f ∓ iD2f cosα∓ f

(

m− 4π

k
|f |2

)

sinα = 0 . (4.19)

Requiring that the supersymmetry transformations (2.22) and (2.23) of the fermionic fields

vanish combined with these BPS equations yields the following conditions,

ǫα ± γ0
αβ ǭ

β cosα± iγ1
αβ ǭ

β sinα = 0 , (4.20)

∓iγ0
αβ ǭ

β sinα∓ γ1
αβ ǭ

β cosα+ iγ2
αβ ǭ

β = 0 , (4.21)

where γµ
αβ are the three-dimensional γ-matrices given in appendix B. This tells us that the

BPS equations retain a quarter of the N = 2 supersymmetry, specified by the effective

supercharge (in the case cosα = 1)

Q = Q1 ± iQ2 + iQ̄1 ∓ Q̄2 . (4.22)
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One should be careful about the above procedure deriving the BPS equations (4.18),

(4.19). We first assumed an ansatz and derived the effective Hamiltonian (4.9) which is

valid only for the special configuration (4.1). There is a possibility that the BPS equations

are not consistent with the original equations of motion. Let us check this issue. Once the

equations (4.18), (4.19) are satisfied, we have

DµDµf = m2f − 16πm

k
|f |2f + 3

(

16π2

k2

)

|f |4f. (4.23)

This is the equation of motion (2.15) for ZA = W †A for the ansatz (4.1). Therefore the

BPS equations (4.18), (4.19) are consistent with the full (second order) equations of motion

for ZA,WA.

Note that in terms of the physical fuzzy S3 radius R, the potential term in the equa-

tion (4.9) becomes

V (R) =
4π2NT 3

2R
2

k2(N − 1)2

(

R2 − (N − 1)km

2πT2

)2

. (4.24)

At large N , this gives

V (R) ∼ T5
T2

N

(

R3 − k

4π

mN

T2
R

)2

, (4.25)

where we have used Tp = (2π)−pMp+1
11 .

After a trivial rescaling of R, the result agrees with the potential (3.4) evaluated from

the spherical M5-brane.5 Once we consider the reducible ansatz SA → S̃A, the potential

is a sum of the each SA
Nb

sectors, i.e., it is given by

V (R) ∼
l
∑

b=1

T5
T2

Nb

(

R3
b −

k

4π

mNb

T2
Rb

)2

,

l
∑

b=1

Nb = N . (4.26)

This has the same form of the potential for the M2-branes distributed over a 3-sphere (3.7)

giving a 3-sphere shells of M2-branes [8]. Therefore the reducible configuration can be

interpreted as a set of Nb M2-branes polarized into fuzzy S3 spheres with radii Rb. See

figure 2 for a schematic picture.

A comment on this reducible configuration is in order. We have ignored off-block-

diagonal parts of S̃A to derive the equation (4.26). The result is the sum of the potentials

for the radii Rb inside Nb stack of M2-branes without any interactions among each stacks.

Once we turn on the off-block-diagonal parts, it represents interactions among each stack

of M2-branes and hence, in the dual picture, interactions among M5-branes.

5Strictly speaking, to compare the result with the dual supergravity side, we need to consider the

reducible configuration (3.19) with two separated bunches of M2-branes. Assuming that the number of

M2-branes in one of the bunches is larger than in the other one, the former can be considered as the source

of the AdS3 and the other can be identified with the probe M5-brane.
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Figure 2. A schematic picture of the reducible fuzzy S3 shell configuration for l = 2 case. A

number of N1 = 2, N2 = 3 M2-branes are polarized around R1 ∼ √
N1 and R2 ∼ √

N2.

5 Solutions

In this section, we explore solutions for the BPS equations (4.18), (4.19). Since it is difficult

to find solutions for general cases, we focus on the simplest situations. Let us first consider

the cosα = 1 static case. In this case (T − P) must vanish and the energy bound is given

by B and S. The BPS equations reduce to

D1f ∓ iD2f = 0 , (5.1)

− k

8π
B ± |f |2

(

m− 4π

k
|f |2

)

= 0 . (5.2)

This is nothing but the equation (14) in [18]. Following [14], we now assume an ansatz

f(r, θ) = λg(r)einθ , λ2 =
km

4π
, g(r) ∈ R , (5.3)

ai(r) = ǫij
x̂j

r
[a(r) − n] (i = 1, 2) , (5.4)

where (r, θ) are polar coordinates in the M2-brane world-volume and n is an integer. The

BPS equations (5.1), (5.2) reduce to

g′(r) = ∓1

r
a(r)g(r) , (5.5)

a′(r)

r
= ∓2m2g2(r)(g2(r) − 1) . (5.6)

Here the prime stands for the differentiation with respect to r. Requiring ai(r) and g(r)

to be non-singular at the origin, we obtain boundary conditions

a(0) − n = 0 , ng(0) = 0 . (5.7)

On the other hand, the condition of finite energy is requiring that the scalar field settles

down to its vacuum configuration at infinity, namely,

g(∞) =

{

0 (symmetric phase) ,

1 (broken phase) .
(5.8)
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From the equations (5.5), (5.6), we obtain

(ln g2)′′ +
1

r
(ln g2)′ + 4m2g2(1 − g2) = 0 . (5.9)

When g is small, the O(g4) term can be neglected and we can find an explicit solution [14].

That is given by

g(r) =

√
8s

2mr

[(

r

r0

)s

+
(r0
r

)s
]−1

. (5.10)

Here r0, s are arbitrary constants. The energy density for the ansatz (5.3) and (5.4) is

given by

E =

∫ ∞

0
drE , (5.11)

E = 4πrN(N − 1)λ2

(

(g′)2 +
g2a2

r2
+

(

a′

2mrg

)2

+m2g2(g2 − 1)2

)

. (5.12)

The magnetic charges and angular momentum are also readily written down as

Φ =
km

2

∫

dra′(r) , (5.13)

S = 2πλ2

∫

dr(2a(x)g(x)g′(x) + a′(x)g2(x)) , (5.14)

and P = 0 and T = 0. Considering the boundary conditions (5.7) and (5.8), (5.13)

and (5.14) become

Φ = −km
2

(n+ α) , S = −2πλ2αβ (5.15)

where α = −a(∞) and β = g(∞). In the following analysis, we consider the case B < 0,

which corresponds to choosing the plus sign in (5.3) and (5.4). We will also see that S = 0

for all the cases we will discuss below. Because the detailed study of the global structure of

these solutions has been performed in [14], we just briefly describe the solutions according

to the boundary conditions.

5.1 Vortices

First consider the case of the boundary condition g(∞) = 1. For the n = 0 case, the

only solution is the vacuum configuration, g(r) = 1 and a(r) = 0. Thus it is just the

spherical M5-brane discussed in section 3. For the n 6= 0 case, a topologically non-trivial

configuration appears, which connects the boundaries g(0) = 0, a(0) = n and g(∞) =

1, a(∞) = 0. They are vortex solutions. Although no explicit solution of the equation for

this boundary condition is known, it is possible to solve it numerically. In figure 3, we plot

g(r) and a(r) for the n = 1 solution and its corresponding energy density. We also show

the magnetic flux density in figure 4. We can see that the topological charge is given by the

magnetic flux Φ = −kmn
2 . As can be seen in figure 3, in almost all of the region of the M2-

brane world-volume, the configuration represents the vacuum fuzzy S3 discussed in section

3 but at the origin, there is a “dimple” inside which the full supersymmetry is recovered.
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Figure 3. The left figure shows the profiles of the function g(r) (solid line) and a(r) (dashed line)

for the topological vortex with m = 1. The right figure shows the behavior of corresponding energy

density with k = 1 and N = 2.

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

Figure 4. Plots of the absolute value of the magnetic flux density with k = 1 and m = 1. Solid,

dashed, dot-dashed lines correspond to vortex, Q-ball and non-topological vortex, respectively.

5.2 Q-balls

Next we consider the case g(∞) = 0 and n = 0. In this case, the scalar function f(x)

approaches the trivial vacuum and therefore all configurations are topologically trivial.

The gauge field part a(r) starts from the boundary a(0) = 0 and approaches some value

a(∞) which characterizes the value of magnetic flux Φ. The magnetic flux is given by the

U(1) Noether charge through the relation (4.17). This kind of solution is called a Q-ball.

This is a lump-like object localized on a ring which surrounds the origin. Around the origin,

the fuzzy S3 has non-zero radius but the full supersymmetry is generically broken there.

This is because the value of g(r) at the origin need not to be the value in the vacuum. The

situation is similar at infinity where the fuzzy sphere collapses into zero size but the gauge

field has non-zero value. The plots of the solution and corresponding energy density are

shown in figure 5. The behavior of the magnetic flux is shown in figure 4.
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Figure 5. The left figure shows the profiles of the function g(r) (solid line) and a(r) (dashed line)

for the Q-ball solution with m = 1. The right figure shows the behavior of corresponding energy

density with k = 1 and N = 2.
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Figure 6. The left figure shows that the profiles of the function g(r) (solid line) and a(r) (dashed

line) with m = 1. The right figure shows the behavior of corresponding energy density for the

non-topological vortex with k = 1 and N = 2.

5.3 Non-topological vortices

Here we consider the case g(∞) = 0 and n 6= 0. The solutions in this case are hybrids

of the previous two cases. The large distance behaviors of g(r) and a(r) are the same as

those in the Q-ball case, while they are similar to the vortex solution around the origin.

These types of solutions are called non-topological vortices. Again, around the origin, the

supersymmetry is recovered. We show the plots of this type of solution for the n = 1 case,

its energy density in figure 6 and the flux density in figure 4.

5.4 Gauged domain wall

Next, let us consider cosα = 1 but non-static case. The BPS equations (4.18), (4.19)

reduce to

D0f ± if

(

m− 4π

k
|f |2

)

= 0 , (5.16)

D1f ∓ iD2f = 0 . (5.17)
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Considering the upper sign in the equations and assuming the following ansatz

f(t, x1, x2) = φ(x1)e
−im(t+x2) , φ(x1) ∈ R , (5.18)

a0(x1) = a2(x1) , a1 = 0 , (5.19)

the equation (5.16) implies

a0 = a2 =
4π

k
φ2(x1) . (5.20)

On the other hand, the equation (5.17) reduces to

∂1φ−mφ+
4π

k
φ3 = 0 . (5.21)

The gauge field equations of motion are satisfied provided φ satisfies the equation (5.21).

Solutions of (5.21) are

φ2(x1) =
k

4π

m

1 ±Ae−2mx1

, (5.22)

where A > 0 is an integration constant. This solution was first found in [17] and was

there called a “supertube” solution. The solution which has plus sign in front of A = 1

corresponds to a domain wall which interpolates between φ2(−∞) = 0 and φ2(+∞) = km
4π

.

At x1 = +∞, it describes an M5-brane wrapping an S3 while at x1 = −∞, it is the trivial

vacuum. Although we are considering the cosα = 1 case, and hence T − P = 0, each T

and P have non-vanishing values. Indeed, the tension and the momentum for the solution

are the same value T = P = km2/8π2 and S = 0. This fact means that the domain wall

tension is canceled by the momentum and makes it bend freely [17].

This solution would be interpreted as a brane configuration by following the discussion

in section 3. In the solution, φ(x1) part corresponds to the 1/2 BPS domain wall solu-

tion (3.16). An M5-brane at x1 > 0 bends and an M5-brane fillingB4 may appear at the ori-

gin. On the other hand, the phase factor e−im(t+x2) acts as a rotation in the 3-7, 4-8, 5-9, 6-

10 plane [8]. This can be seen by decomposing ZA = XA+2+iXA+6, W †A = XA+4+iXA+8

where the X and iX parts correspond to hermitian and anti-hermitian parts of the bi-

fundamental scalar fields. Therefore, the solution can be interpreted as a configuration of

the bent branes rotating in time and its angle also depends on x2.

6 Conclusions and discussions

In this paper, we investigated the ABJM model deformed by an F-term mass. The mass

term generically breaks N = 6 maximal supersymmetry down to N = 2. A vacuum

of the model corresponding to an irreducible representation is found to be a fuzzy S3

representing an M5-brane with topology R1,2 × S3 at large-N . We find that the radius of

the sphere coincides with the one found in [8]. The tension of the domain wall solutions

is evaluated and compared with the result of the dual M5-brane calculation. With this

observation, we identified the F-term mass m as the VEV of the anti-self-dual 4-form flux
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T4 in the eleven-dimensional supergravity that was introduced in [8]. Therefore the vacuum

configuration can be interpreted as Myers’ dielectric effect making N M2-branes puff up

into a fuzzy sphere.

In the latter half of this paper, we assumed a polarized M2-brane configuration. We

showed that the mass deformed ABJM model reduces to the abelian Chern-Simons-Higgs

model with 6th power polynomial potential studied in detail by Jackiw-Lee-Weinberg [14].

The potential part of this effective model is just the potential for the radius of the spherical

M5-brane. This effective model admits not only BPS topological vortices and domain walls

but also non-topological vortices and Q-balls. We find that these BPS topological/non-

topological solitons preserve 1/4 of the manifest N = 2 supersymmetry. Because these

solutions can exist only in the m 6= 0 case, these configurations are supported against

collapse by the non-zero background flux T4. The situation is quite similar to the massive

BLG model where various BPS soliton solutions are possible [24, 25].

A comment on the number of supersymmetries is in order. In the massless ABJM

model, SU(2) × SU(2) global symmetry together with SU(2)R symmetry gives SU(4)R ∼
SO(6)R implying the existence of N = 6 supersymmetry. Indeed, in [4], the explicit on-shell

N = 6 supersymmetry transformation of component fields was found. Our case is similar to

the massless ABJM model. The global SU(2)×SU(2) symmetry is broken down to SU(2)diag

by the mass term. However, this SU(2)diag does not commute with the remaining SU(2)R.

These two SU(2)s are combined into an SO(4)R which would imply an enhancement of

N = 2 supersymmetry to N = 4. Presumably, this supersymmetry is enhanced to the

maximal one since our deformation term (2.14) (together with its conjugate term) does

not break the U(1)R and Z2 symmetries and these are combined with the SU(2)s giving

SU(2)× SU(2)×U(1)R ×Z2 symmetry as discussed in [12]. Although we do not present it

here, it would be possible to explicitly find the enhanced supersymmetries by the Noether

method or requiring that the supersymmetry algebra closes.

Another important issue is the understanding of the solution in the dual spherical M5-

brane world-volume picture. Because our effective potential is identified with the radius

potential of the spherical M5-brane in the presence of the anti-self-dual 4-form flux, the

BPS solutions discussed in this paper correspond to BPS configurations of this spherical

M5-brane. It seems possible to find these BPS configurations by promoting the constant

radius r in (3.4) to a “field” r = r(x1, x2) on the M2-brane world-volume and solving

the BPS equations obtained from the promoted spherical M5-brane action. This issue is

beyond the scope of this paper and we leave it for future work.

Finally, let us comment on the dimensional reduction of the ABJM model. Since the

ABJM model describes N coincident M2-branes in eleven dimensions, once we compactify

one direction along the M2-brane world-volume, the model should describe the low energy

effective theory of N coincident fundamental strings (F1) in type IIA string theory. This

theory is similar to the matrix string theory [26] representing a polarization of the F1 due

to the background flux. The configuration corresponding to the M2-branes polarized into

the M5-brane now reduces to fundamental strings polarized into a D4-brane.6 The anti-

6A similar configuration for F1 polarized into D2 was studied in the dilute set of D0-branes having the
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self-dual 4-form flux in eleven-dimensions is reduced to the anti-self-dual RR 4-form flux

in ten-dimensions. The multiple F1 is polarized into a fuzzy S3 due to this flux. Since the

potential terms both in the M5-brane action and the massive ABJM model do not change

under the dimensional reduction, the discussion in section 3 holds even for the D4/F1 case

implying AdS3/CFT2 duality.

On the other hand, the effective Lagrangian for the polarized M2-branes discussed in

section 4 reduces to the one for the polarized F1. One component of the gauge field aµ

becomes an auxiliary field after the dimensional reduction. The resultant theory is a new

two dimensional BF-like theory. We find that this model is exactly the one studied in [28].

It was shown that the model exhibits N = (2, 2) supersymmetry in two-dimensions and

have a BPS domain wall solution. It would be interesting to examine this solution in terms

of brane configurations in ten-dimensions.
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A BPS matrices

The explicit form of the BPS matrices was first constructed in [12] to find a vacuum of the

mass deformed ABJM model. The BPS matrices satisfy the following conditions,

SA = SBS†
BS

A − SAS†
BS

B , (A.1)

S†
A = S†

AS
BS†

B − S†
BS

BS†
A . (A.2)

The explicit form of the matrices satisfying the above conditions is given by

(S†
1)mn =

√
m− 1δmn , (S†

2)mn =
√
N −mδm+1,n , (A.3)

S1S†
1 = diag(0, 1, 2, . . . , N − 1) = S†

1S
1 , (A.4)

S†
2S

2 = diag(N − 1, N − 2, . . . , 1, 0) , (A.5)

S2S†
2 = diag(0, N − 1, N − 2, . . . , 1) , (A.6)

S†
AS

A = (N − 1)1N×N . (A.7)

Therefore we have

TrSAS†
A = TrS†

AS
A = N(N − 1). (A.8)

F1 charge [27].
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These matrices satisfy the following relations,

ǫCDS
CS†

AS
D = ǫABS

B , ǫCDS†
CS

AS†
D = −ǫABS†

B , (A.9)

ǫACǫ
CB = δA

B , ǫACǫCB = δA
B , ǫ12 = −ǫ12 = 1 . (A.10)

B N = 2 superfield formulation of ABJM model

Here we briefly review the N = 2 superfield formulation of the mass-deformed ABJM model

given in section 2. We follow the same notation as in [19]. In terms of N = 2 superfields, the

mass-deformed ABJM model is described by chiral superfields ZA,WA, Z̄A, W̄A(A = 1, 2)

and two vector superfields V, V̂. The chiral superfields ZA,WA(A = 1, 2) and Z̄A, W̄A

transform in the bi-fundamental representations (N, N̄) and (N̄,N) under U(N) × U(N),

respectively. They are expanded in components

Z(xL) = Z(xL) +
√

2θζ(xL) + θ2F (xL) , (B.1)

Z̄(xR) = Z†(xR) −
√

2θ̄ζ†(xR) − θ̄2F †(xR) , (B.2)

W(xL) = W (xL) +
√

2θω(xL) + θ2G(xL) , (B.3)

W̄(xR) = W †(xR) −
√

2θ̄ω†(xR) − θ̄2G†(xR) . (B.4)

Here xµ
L = xµ + i(θγµθ̄) and xµ

R = xµ − i(θγµθ̄), where γµ
αβ are the three-dimensional γ-

matrices defined by γµ
αβ = (−1,−σ3, σ1). The vector superfields V and V̂ transform in the

adjoint representations (adj, 1) and (1,adj) of U(N) × U(N). The component expansion

in the Wess-Zumino gauge is given by

V(x) = 2iθθ̄σ + 2θγµθ̄Aµ +
√

2iθ̄2θχ−
√

2iθ2θ̄χ̄+ θ2θ̄2D , (B.5)

and similarly for V̂ . The action in terms of N = 2 superfield is written by

S = Skin + SCS + Ssp , (B.6)

where

Skin =

∫

d3xd4θTr
(

−Z̄Ae
−VZAe−V̂ − W̄Ae−V̂WAe

V
)

, (B.7)

SCS = − ik

8π

∫

d3xd4θ

∫ 1

0
dtTr

(

VD̄α(etVDαe
−tV) − V̂D̄α(etV̂Dαe

−tV̂)
)

, (B.8)

Ssp =
8π

k

(∫

d3xd2θW (Z,W) +

∫

d3xd2θ̄W̄(Z̄ , W̄)

)

, (B.9)

where the superpotential is given by (2.12), (2.13) and (2.14). Substituting the expres-

sions (B.1)–(B.5) into the action and integrating over the Grassmann measure one obtains

the off-shell component action. Further elimination of the set of auxiliary fields yields the
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on-shell component action. The equations of motion are given by

FA =
2π

k

(

2ǫACǫBDW
†BZ†

CW
†D − km

2π
W †A

)

, (B.10)

GA =
2π

k

(

−2ǫACǫ
BDZ†

BW
†CZ†

D − km

2π
Z†

A

)

, (B.11)

NA = σZA − ZAσ̂ , MA = σ̂WA −WAσ, (B.12)

σa =
2π

k
TrT a(ZZ† −W †W ) , σ̂a =

2π

k
TrT a(Z†Z −WW †) , (B.13)

χa = −4π

k
TrT a(Zζ† − ω†W ) , χ̂a = −4π

k
TrT a(ζ†Z −Wω†) . (B.14)

The bosonic on-shell component action is described in (2.1), (2.2), (2.3) and (2.4).

C N = 2 abelian Chern-Simons-Higgs model from ABJM

In this appendix, we see the full structure of the effective Lagrangian on polarized M2-

branes. In addition to the ansatz for the bosonic parts (4.1), we consider the following

fermionic ansatz,

ζA = −iω†A ≡ ψSA, (C.1)

where ψα is a complex two component spinor. Then the effective Lagrangian corresponding

to the ansatz (4.1), (C.1) is

Leff = 2N(N − 1)

[

k

16π
ǫµνρaµfνρ − |Dµf |2 − iψ†γµDµψ

−16π2

k2
|f |2

(

|f |2 − km

4π

)2

+ i

(

4π

k

)(

3|f |2 − km

4π

)

ψ†ψ

]

. (C.2)

This result precisely gives N = 2 supersymmetric abelian Chern-Simons-Higgs model stud-

ied in [15] after suitable rescaling of variables. The N = 2 supercharge is given by

q =

∫

d2x

[

γµγ0ψDµf̄ − k

4π
γ0ψf̄

(

|f |2 − km

4π

)]

. (C.3)

This satisfies the relation

{qα, q̄β} = −i(γµ)α
βPµ − δα

βZ . (C.4)

Here Pµ is the momentum operator and Z is the central charge given by

Z =

∫

d2x

[

−1

2
εijfij|f |2 +

4π

k
i

(

|f |2 − km

4π

)

(

f̄D0f − fD0f̄ − iψ̄γ0ψ
)

]

, (C.5)

where ε12 = −1. The central charge corresponding to the BPS configurations in section 5

is easily evaluated. The result is

Z =
km

4π

∫

d2x B . (C.6)

This correctly reproduces the energy bound discussed in section 5.
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